
Automatically Translating Image Processing Libraries to Halide

MAAZ BIN SAFEER AHMAD, University of Washington, Seattle
JONATHAN RAGAN-KELLEY, University of California, Berkeley
ALVIN CHEUNG, University of California, Berkeley
SHOAIB KAMIL, Adobe

Fig. 1. Dexter parses the input C++ function (shown on the left) into a DAG of smaller stages, then uses our 3-step synthesis algorithm to infer the semantics
of each stage, expressed in a high-level IR (middle). Finally, code generation rules compile the IR specifications into executable Halide code (right).

This paper presents Dexter, a new tool that automatically translates im-
age processing functions from a low-level general-purpose language to a
high-level domain-specific language (DSL), allowing them to leverage cross-
platform optimizations enabled by DSLs. Rather than building a classical
syntax-driven compiler to do this translation, Dexter leverages recent ad-
vances in program synthesis and program verification, along with a new
domain-specific synthesis algorithm, to translate C++ image processing
code to the Halide DSL, while guaranteeing semantic equivalence. This new
synthesis algorithm scales and generalizes to much larger and more complex
functions than prior work, including the ability to handle tiling, conditionals,
and multi-stage pipelines in the original low-level code. To demonstrate the
effectiveness of our approach, we evaluate Dexter using real-world image
processing functions from Adobe Photoshop, a widely used multi-platform
image processing program. Our results show that Dexter can translate
264 out of 353 functions in our test set, with the original implementations
ranging from 20 to 150 lines of code. By leveraging Halide’s advanced auto-
scheduling capabilities, we get median speedups of 7.03× and 4.52× for
Dexter-translated functions as compared to the original implementations
on Intel and ARM architectures, respectively.

CCS Concepts: • Computing methodologies → Image processing; •
Software and its engineering→ Search-based software engineering;
Automatic programming;

Authors’ addresses: Maaz Bin Safeer Ahmad, University of Washington, Seattle,
maazsaf@cs.washington.edu; Jonathan Ragan-Kelley, University of California, Berke-
ley, jrk@berkeley.edu; Alvin Cheung, University of California, Berkeley, akcheung@cs.
berkeley.edu; Shoaib Kamil, Adobe, kamil@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART204 $15.00
https://doi.org/10.1145/3355089.3356549

Additional Key Words and Phrases: Verified Lifting, Machine Programming,
Stencil Computation

ACM Reference Format:
Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib
Kamil. 2019. Automatically Translating Image Processing Libraries to Halide.
ACM Trans. Graph. 38, 6, Article 204 (November 2019), 13 pages. https:
//doi.org/10.1145/3355089.3356549

1 INTRODUCTION
Domain specific languages (DSLs) for image processing [Adobe
2010; Guenter and Nehab 2010; Ragan-Kelley et al. 2013] enable
high performance, portability, and maintainability, but extending
these benefits to existing low-level code is difficult. Rewriting entire
legacy applications in DSLs requires huge amounts of human effort
and risks adding bugs. Building compilers to automatically trans-
late low-level image processing code to high-performance DSLs
using traditional code rewriting techniques such as syntax-directed
translation [Aho et al. 2006] is fragile, since these methods are
prone to failure when code does not exactly match expected syntac-
tic patterns. These techniques also provide no guarantees that the
translated code is correct.

In this paper, we propose a different way to solve the translation
problem. Rather than constructing syntax matching rules, we con-
sider the translation problem as a search: given the input code, we
build and solve a search problem that helps us find a provably seman-
tically equivalent program in the target language, finding solutions
with the aid of recent advances in program synthesis [Bodík and
Jobstmann 2013; Gulwani 2010] and automatic formal verification
techniques. To validate this concept, in this paper we take image
processing operations and pipelines written in C++ and translate
them to Halide [Ragan-Kelley et al. 2012], a high-performance DSL
for image computation.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549

204:2 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

While prior work has proposed similar approaches for differ-
ent application domains [Ahmad and Cheung 2018; Cheung et al.
2013; Kamil et al. 2016], translating image processing code presents
unique challenges. First, although Halide is not a Turing-complete
general purpose language, the number of programs expressible is
nevertheless huge. In addition, image processing works with arrays,
but the lack of first-class multidimensional arrays in languages like
C++ leads to low-level code including pointer arithmetic and using
single-dimensional arrays to represent multi-dimensional data. Prior
work in other domains has also not considered operations common
in low-level image processing code like bit-shifting, widening and
narrowing casts, and exact integer arithmetic over multiple data
types, each of which present challenges for program synthesis and
verification. Combined with various low-level optimizations com-
mon in C++ image processing code (e.g., loop tiling or vectorization),
these characteristics make reasoning about, and hence translating,
image processing code difficult.
We rely on two insights to make the problem tractable. First,

rather than searching directly over the textual representation of
Halide programs, we search over an intermediate representation
(IR) that closely resembles Halide, but without details such as type
annotations. Second, to make the search scalable, we decompose
the search problem into three parts: given an image processing
operation written in C++, we first reason about the number of
arrays modified by the computation, along with their dimensionality.
We analyze how the arrays are traversed to determine the region
of interest (ROI) of the operation. Next, we identify the inputs to
the operation: the input array reads and scalars used to compute
the output. Finally, we use the information inferred from the first
two steps to reason about the actual computation performed over
the input image to generate the output. Our algorithm infers full
specifications for image processing functions and pipelines, which
can then be straightforwardly used to generate executable Halide
code. We argue that our new search-based algorithm is both simpler
and more general than designing ad hoc syntax matching rules in a
traditional compiler.
To evaluate the effectiveness of our approach, we have imple-

mented our translation algorithm in Dexter, a translator for rewrit-
ing C++ image processing functions in Halide. Dexter performs
translation by first synthesizing a summary program written in
our IR that decomposes the image processing operation into the
three components described above. Then, it uses the synthesized
summary to generate executable Halide code. Finally, Dexter lever-
ages the Halide auto-scheduler [Adams et al. 2019] to generate
efficient schedules for the translated functions. We show that our
Dexter prototype can translate 264 image processing functions,
developed over decades, from Adobe Photoshop source code per-
forming various blend and filter operations. In addition, we show
that Dexter can also translate complex, difficult-to-understand op-
timized implementations containing vector intrinsics and loop tiling
optimizations, along with multi-stage image processing pipelines.
Overall, this paper presents the following contributions:

• We describe a three-stage search algorithm for specification
inference of image processing functions. Our algorithm is
much more scalable than existing techniques, both in terms

of the ability to infer specifications from complex code and
the time needed to infer them. Furthermore, the algorithm
expands the types of operations supported (e.g., bit-wise op-
erations, which are not supported in existing synthesizers).

• We describe how Dexter translates larger image-processing
functions, such as those implementing multi-stage pipelines,
by parsing the functions into a directed-acyclic graph (DAG),
where each node in the DAG corresponds to a loop-nest im-
plementing an individual operation in the pipeline.

• We implement a prototype called Dexter1 based on our al-
gorithm, and show that it can automatically translate 264
functions from a set of 353 functions from the source code
of Adobe Photoshop. These functions, implemented using
over 36k lines of C++ code, include complexities such as
vectorization, loop-tiling, type-casting, bitwise operations,
reductions and conditionals, all of which were beyond the
scope of prior work [Kamil et al. 2016]. By leveraging Halide
and its auto-scheduler, our translated functions are not only
more portable, but perform up to 73× faster than the original
implementations.

In the rest of the paper, we first discuss prior work and back-
ground in §2. Then in §3, we give an overview of Dexter using an
example, and discuss our three-stage algorithm in §4. We describe
the implementation of Dexter in §5, followed by experimental
results in §6.

2 RELATED WORK & BACKGROUND

2.1 Automatically Translating Image Processing Code
We discuss related techniques that optimize either image process-
ing or stencil code via automatic rewriting or compilation in three
categories: dynamic analyses that use runtime techniques for opti-
mization, hybrid analyses that use both compilation and runtime
mechanisms to optimize input code, and classical compilation (i.e.,
static analysis).

2.1.1 Dynamic Analysis. Dynamic analysis based techniques per-
form runtime profiling of existing code to derive equivalent trans-
lations. Helium [Mendis et al. 2015], an example of such a tool,
identifies and converts image processing kernels from stripped bina-
ries to Halide. Helium uses dynamically generated program traces
to learn the shapes and values of the input and output buffers, gen-
eralizing the computation into a symbolic expression tree that is
then used to generate Halide code. Such runtime techniques are fast
and can be used even if the code is available only in binary form.
However, the reconstructed kernels are merely an approximation
of the original code based on the observed set of traces and such
techniques do not offer any soundness guarantees. Furthermore,
if the traces only exercise a specific set of parameters (for exam-
ple, a single blur radius for a filter that supports user-definable blur
radii), the translated function will only support the specific observed
parameters, limiting the tool’s usefulness.

2.1.2 Static-Dynamic Hybrid Analysis. To compensate for the lack
of soundness guarantees in dynamic techniques, hybrid analysis
uses static compilation techniques in addition to runtime profiling.
1http://dexter.uwplse.org

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:3

For instance, STNG [Kamil et al. 2016] is a compiler for translating
FORTRAN stencils to Halide. It statically analyzes the input code to
ensure that the generated Halide implementations are semantically
equivalent to the original over all possible inputs.

LikeDexter, STNG uses program synthesis to find a valid transla-
tion given the input. In the absence of a scalable synthesis algorithm,
such as the one described in this paper, STNG restricts its search to
a space of candidate Halide programs defined by a template. STNG
constructs these templates through dynamic analysis of program
traces, similar to Helium. Therefore, STNG’s approach, although
sound, suffers frommany of the same limitations as Helium. The gen-
erated templates are often over-fitted to the set of traces observed
and can exclude valid translations from the search space. While any
translation found by STNG is guaranteed to be correct, STNG is
limited to translating only simple functions as each runtime trace
can capture only a single path through the complex control flow
in a program, and reconstructing the original control flow through
a small set of traces remains challenging. In addition, STNG can-
not handle many important operations found in image processing,
including casting and bitwise arithmetic.
Similar hybrid approaches are used by systems outside of im-

age processing that synthesize programs based on input-output
examples, such as Scythe [Wang et al. 2017], which synthesizes
database queries based on user-provided input-output pairs, and
FlashFill [Gulwani 2011], a feature in Microsoft Excel that uses
examples to guess user-intended transformations.

2.1.3 Syntax-Driven Compilation. Classical source-to-source trans-
formations have been utilized to generate optimized code from
higher-level descriptions, based on syntax-driven transformations,
which enable fast performance when input code matches expected
syntactic forms. As discussed in §1, such compilers are based on
syntax matching rules to translate input programs, and develop-
ing such rules requires major engineering effort. Such approaches
have been used to find optimal schedules for image processing op-
erations [Boechat et al. 2016; Mullapudi et al. 2016; Ragan-Kelley
et al. 2012], along with compiling image processing operations to
hardware [Hegarty et al. 2014, 2016].
[Yang et al. 2016] employs syntax-driven techniques to trans-

late image processing code in Python by transforming the Python
abstract syntax tree into lower-level Cython [Dalcin et al. 2010]
code, which is a mixture of Python and C, while performing several
program transformations. Similarly, SEJITS specializers [Catanzaro
et al. 2009; Kamil et al. 2012] use syntax-driven code generation
for translating subsets of Python code into various languages. Such
systems invariably handle only a subset of ways input programs can
encode their operations and do not provide the kinds of correctness
guarantees possible with program verification.

2.2 Program Synthesis and Verification
InDexter, we use program synthesis to infer a summary for each im-
age processing operation in the input library. Program synthesizers
take in two inputs: a search space of candidate program summaries
written in our IR, and a way to verify if a candidate is semantically
equivalent to the input code. The former is described using a gram-
mar over our IR, to be discussed in §4. For the latter, we leverage

Hoare-style verification conditions [Hoare 1969] that are readily
expressible in forms understood by solvers such as Z3 [De Moura
and Bjørner 2008].
Dexter relies on the Sketch [Solar-Lezama 2019] program syn-

thesizer to generate and search through the candidate program
summaries, in conjunction with a solver for validation. There have
been a number of approaches to solve the synthesis problem [Bodík
and Jobstmann 2013; Gulwani 2010] using different algorithms, such
as constraint-based search [Solar-Lezama et al. 2007], enumerative
search [Phothilimthana et al. 2016], or stochastic search [Schkufza
et al. 2014]. Internally, Sketch solves the search problem by sampling
the search space, and using a SAT solver to check for the validity of
the sampled programs. If a sample is incorrect, the solver will return
a counterexample (i.e., an image that, when fed into the sample and
input program, returns different results). Sketch will then reduce
the space by sampling only from those programs that satisfy the set
of counterexamples found thus far. This proceeds iteratively until
either Sketch finds a correct program or the search times out.

Unfortunately, standard algorithms for synthesis fail to solve our
translation problem, as the number of candidate programs is simply
too large to be considered by an existing synthesizer. To make the
search efficient, specialized algorithms have been developed for
different application domains, and we discuss how we address the
issue for image processing operations in §4.

3 OVERVIEW
We now describe howDexter translates image processing functions
in C++ to Halide, using an example to illustrate the workflow.

3.1 Image Processing Functions
Dexter targets image processing functions written in standard C++.
Such functions are often expressed using a sequence of loop nests
that iterate over the input buffers to compute intermediate or output
buffers. Each loop nest iterates through a region of interest (ROI)
and, for each point i within the ROI, computes the corresponding
value in the output buffer using a neighborhood of values around i
and invoking different kinds of operators, such as arithmetic, bitwise,
and conditional expressions (i.e., Halide’s select operator); array
reads using i; and reductions. The input image can be stored using
arrays, vectors, or even user-defined types (UDTs).We outline the set
of C++ features supported by our implementation in §5.1. Dexter
only targets code that implements image processing logic, and does
not translate setup or logging code present in image processing
applications (e.g., memory allocation, I/O, etc), as such code does
not yield performance improvement even if expressed in Halide.

3.2 Translating Image Processing Functions to Halide
The input to Dexter is a library of image processing functions im-
plemented in C++. As output,Dexter generates a new, semantically
equivalent version of the input library implemented using Halide.
Dexter translates the input by parsing each function as a directed
acyclic graph (DAG), with each node in the DAG corresponding to
a loop nest in the input code, and synthesizing a semantically equiv-
alent Halide function for each node in the DAG. Each translated
function then becomes a stage in the overall Halide pipeline.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:4 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 void blur(uint8_t* dst, uint8_t* src, int rows, int cols,
2 int rowBytes) {
3 int* tmp = new int[rows*rowBytes];
4 // horizontal blur
5 for (int r = 0; r < rows; r++) {
6 for (int c = 0; c < cols; c++) {
7 tmp[c] = (src[c-1] + src[c] + src[c+1]) / 3;
8 }
9 tmp += rowBytes;
10 src += rowBytes;
11 }
12 tmp -= rows*rowBytes; // reset pointer location
13 // vertical blur
14 for (int r = 0; r < rows; r++) {
15 for (int c = 0; c < cols; c++) {
16 int sum = (tmp[c-rowBytes] + tmp[c] +
17 tmp[c+rowBytes]);
18 dst[c] = sum / 3;
19 }
20 dst += rowBytes;
21 tmp += rowBytes;
22 }
23 }

(a) Input: C++ Implementation of a 3×3 box blur filter.

roi = [(0; cols); (0; rows)]
terms = [src(x − 1;y); src(x ;y); src(x + 1;y); 3]

tmp(x ;y) = (terms[0] + terms[1] + terms[2]) / terms[3]

roi = [(0; cols); (0; rows)]
terms = [tmp(x ;y − 1); tmp(x ;y); tmp(x ;y + 1); 3]

dst(x ;y) = (terms[0] + terms[1] + terms[2]) / terms[3]

(b) Summary expressed using Dexter’s IR that describes the blur function.

1 Func blur(Func dst, Func src, int rows, int cols) {
2 RDom r(0, cols, 0, rows);
3 Func tmp; Var i, j;
4 tmp(i,j) = (src(i-1,j) + src(i,j) + src(i+1,j)) / 3;
5 dst(i,j) = undef<uint8_t>();
6 dst(r.x,r.y) = (tmp(r.x,r.y-1) + tmp(r.x,r.y)
7 + tmp(r.x,r.y+1)) / 3);
8 return dst;
9 }

(c) Output: Halide implementation of the blur function, as generated from
the IR summary shown in b).

Fig. 2. Using Dexter to translate a 3×3 box blur filter from C++ to Halide,
with casting removed for clarity.

To demonstrate this process, we show how Dexter translates
a 3×3 box blur to Halide. As shown in Figure 2a, the original im-
plementation uses the composition of a 1×3 and a 3×1 blur filter,
each implemented as a pair of nested loops, to compute the over-
all 3×3 blur. The first loop nest iterates the source image src and
saves the intermediate output in tmp. Each iteration of the outer for
loop (Lines 5–11) uses the inner for loop (Lines 6–8) to compute
the r’th row of the tmp buffer, then moves the input and output
buffer pointers to the first column of the next row (Lines 9–10) using
pointer arithmetic. Similarly, the second loop nest iterates over the

C++ Parser Static Analyzer DAG Generator

Program Analyzer

Halide Code Generator

ROI
Generator

Terminals
Generator

Expression
Generator

Formal
Verifier

Summary Generator

C++
Code

Halide
Code

Code Analysis

Verified Summaries

Fig. 3. Dexter’s system architecture. Image processing functions in C++
(orange) are translated into Halide (green).

intermediate buffer and performs a 3×1 vertical blur to compute
the final output stored in dst. Unfortunately, generating a Halide
implementation using syntax-driven rules directly from this C++
implementation is challenging given the myriad of ways the same
computation can be expressed in low-level languages like C++.
Dexter’s goal is to rewrite the code into Halide by inferring a

summary expressed using an intermediate representation (IR) based
on Halide, as shown in Figure 2b. The summary describes the blur
function as a DAG of two operations, where each operation in the
DAG is described using three components: its ROI, which describes
the range and dimensionality over which the operation is realized,
its terms, which is the set of all array reads, constants, and scalar
variables used in the computation, and finally how each point in
the output image is computed using the set of available terms.

Generating Halide code from the IR summary is now straightfor-
ward, as the summary eliminates all scheduling information as well
as any low-level optimizations (like vectorization) that may exist in
the input code, leaving only a declarative description of each output
point. We show the generated Halide code for the blur function
in Figure 2c. Once expressed in Halide, the pipeline can then be
optimized by the auto-scheduler, for instance, by merging the two
stages when iterating over each location in the source image.
Instead of relying on pattern-matching translation rules, which

are brittle and difficult to construct manually, the key insight in
Dexter is to use a search-based technique known as program synthe-
sis [Bodík and Jobstmann 2013; Gulwani 2010] to find the equivalent
IR summary, as described in §2.2. Unfortunately, searching through
the space of all possible summaries is prohibitively expensive, and
has not been addressed by state-of-the-art program synthesizers.
Hence, Dexter uses a new algorithm (discussed in §4) to make the
search efficient.

3.3 System Architecture
Figure 3 shows Dexter’s overall architecture comprising three
modules that make up its compilation pipeline.

First, the program analyzer parses input C++ code into an Abstract
Syntax Tree (AST) and statically analyzes each library function
to identify important features about the code, such as the set of
variables that are read (input) or modified (output). Then, it parses
each function’s AST into a DAG of smaller operations before sending
it along with the analysis results to the next module.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:5

ROI := [B0; B1; : : : ; BD]
Bi := (IntExpr ; IntExpr)

IntExpr := intvars | const | IntExpr Op IntExpr

Op := + | − | ×

(a) Grammar for synthesizing an operation’s region of interest.

Term := intvar | f loatvar | boolvar | const

| arrvar (Index ; : : :)
Index := intvar | intvar ± const | const

| arrvar (Index ; : : :)

(b) Grammar for synthesizing terminal mappings.

Expr := terms | iden | Expr BOp Expr | UOp Expr

| (Expr ? Expr : Expr) | f (Expr ; : : :)
| cast<Type>(Expr)

Type := f loat | uint8_t | int8_t | uint16_t | : : :

BOps := + | − | ∗ | / | << | & | ! = | : : :

UOps := ∼ | − | !

(c) Grammar for synthesizing the computation performed in an operation.

Fig. 4. Search grammars used to synthesize summaries for image processing
operations. Each summary represents a possible Halide tranlsation for the
input operation.

Next, the summary generator synthesizes summaries expressed
using Dexter’s IR for each operation in the DAG. First, the ROI
generator synthesizes the dimensionality and ROI for each opera-
tion. Then, the terminals generator synthesizes a mapping for all
terminals (variables and array reads) found in the input code into a
normalized iteration space. Finally, the expression generator synthe-
sizes an expression that encodes the computation performed in each
operation using the previously synthesized terminals. To ensure se-
mantic equivalence to the input, any summary candidate identified
by the summary generator is passed to the verifier for validation.
We discuss the search and verification procedure in detail in §4.

Once a summary is inferred and verified, the code generator trans-
lates the summary from Dexter’s IR into executable Halide code.
The translation is straightforward given the resemblance between
the IR and Halide. The code generator traverses the summary and
generates equivalent Halide code for each expression, outputting
a compilable Halide generator that can be combined with an op-
timized schedule to produce high performance code. We provide
more details of the code generation process in §5.4.

4 FINDING SUMMARIES FOR IMAGE PROCESSING
OPERATIONS

Dexter uses program synthesis to find translations of image pro-
cessing operations. To search for translations, we define the search
space of Halide programs using a grammar, an excerpt of which is
shown in Figure 4. Given this grammar, the synthesizer will concep-
tually enumerate all programs that can be constructed using it by
randomly choosing a production rule up to a fixed number of times,

and check if any of the constructed Halide programs is semantically
equivalent to the input.

Unfortunately, this process is prohibitively expensive: even if we
limit the synthesizer to expand only up to 5 production rules, the
grammar shown in Figure 4 expands to tens of thousands different
Halide programs; such a search space is at least an order of magni-
tude larger than what any state-of-the-art synthesizer can handle,
making this approach infeasible without further optimizations.

Our key insight to make the search problem tractable in Dexter
is to exploit domain-specific knowledge about image processing
operations. In particular, we observe that we can decompose many
such operations into three components:

• A Region of Interest (ROI) that describes the dimensionality
of the operation and the bounds for each dimension within
which the output is realized.

• The set of terminals used to compute the value of each point
within the ROI. Such terminals can consist of numeric con-
stants, program variables, or array reads.

• The computation performed using the aforementioned set of
terminals to compute the values inside the ROI.

Dexter exploits this insight to decompose the overall summary
synthesis problem into three separate synthesis sub-problems, each
targeting one component above.

4.1 Synthesizing the Region of Interest
An image processing operation’s region of interest (ROI) describes
its dimensionality and bounds. In this section, we describe how
Dexter synthesizes the ROI for each image processing operation.

4.1.1 ROI Grammar. Like other synthesis problems, Dexter syn-
thesizes the ROI for each image processing operation by encoding
the search space of candidate ROIs using the grammar shown in
Figure 4a. In the grammar, each ROI consists of D bound expressions
(Bi : : : BD), one for each dimension. Each bound expression consists
of an upper and lower bound IntExpr that is made up of integer
constants (const), the set of integer variables and pointers read or
updated (intvars) extracted through static analysis of each input
function, and combinations of such expressions using arithmetic
operators.
For example, Figure 2b shows the ROI for each operation in the

box-blur function, shown in Figure 2a. It describes the 1x3 row-blur
as two-dimensional, with bounds 0 ≤ d1 < cols and 0 ≤ d2 < rows
for the first and second dimension, respectively. The synthesizer can
construct this ROI from the grammar by first setting D to be 2, and
then applying the appropriate production rules shown in Figure 4a
to construct the bound expressions for each dimension.

4.1.2 ROI Verification. To synthesize the ROI, we need a way to
check whether a candidate ROI is correct. Recall that we have not
yet synthesized the set of terminals used or the actual computation
performed by the input code. Hence, to verify a candidate ROI, we
create a “reduced” version of the input code fragment, where all
statements in the fragment’s body are removed, except for those (if
any) that update loop counters, array pointers, or array contents.
We replace all array updates with the special value ⊥ to indicate

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:6 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 RDom r(0, cols, 0, rows);
2 Func Var i, j;
3 dst(i, j) = undef<int>(); // ROI's contents undefined
4 dst(r.x, r.y) = ⊥; // except for locations within r

(a) A candidate ROI expressed in Halide.

1 for (int r = 0; r < rows; r++) {
2 for (int c = 0; c < cols; c++) {
3 dst[c] = ⊥;
4 }
5 dst += rowBytes;
6 tmp += rowBytes;
7 }

(b) A reduced version of the 3x1 column-blur used to synthesize the ROI.

Fig. 5. Dexter synthesizes the ROI of an image processing operation by
constructing a reduced version of the input code fragment.

that the array entry has been updated, but using an expression that
we do not yet know (to be synthesized in the last step).

Consider again the 3x3 blur function from Figure 2a. To synthesize
the ROI for the second operation in the pipeline (3x1 column-blur),
Dexter prepares a reduced version of the loop nest, shown in Fig-
ure 5b. Given this code, Dexter generates ROI candidates using the
grammar shown in Figure 4a. To check the validity of a candidate,
Dexter creates a skeletal Halide program; one that corresponds to
the ROI candidate [(0; cols); (0; rows)] is shown in Figure 5a, where
the special value ⊥ is written to the ROI defined by the reduction
domain (r) on Line 4. The validity of a candidate ROI is determined
by checking the equivalence of the candidate (Figure 5a) and the
reduced input code (Figure 5b) through program verifiers.

4.2 Synthesizing the Terminal Mappings
Once an operation’s ROI is synthesized, Dexter next infers the
computation performed by the code fragment for each location
within the ROI. As discussed earlier, Dexter partitions this problem
into two further steps. First,Dexter learns the terminals used in the
computation, such as variables, constants, and array reads. Recall
from §4.1 that we replaced the values of all array updates with the
special value ⊥. Conceptually, the goal of this step is to learn the
arguments that are needed to compute ⊥, as shown in Figure 6a.

4.2.1 Extracting Terminals. To extract the set of terminals, Dexter
statically analyzes the input code for each operation in the func-
tion. The analysis starts at each statement that updates the output
image (such as Line 18 in Figure 2a), and extracts all terminals in-
volved in these assignments, i.e., sum and 3. Then, it traverses the
code backwards to recursively extract all terminals used to compute
the extracted values. Since sum is in the extracted set, the termi-
nals src[c-rowBytes], src[c] and src[c+rowBytes] replace sum
in the extracted set after Line 16 in Figure 2a is analyzed. The fi-
nal set of terminals extracted for the 3x1 column-blur operation is
{src[c-rowBytes], src[c], src[c+rowBytes], 3}. These serve as
the inputs to ⊥ as shown in Figure 6c.

4.2.2 Mapping Terminals. The terminals extracted through static
analysis are defined in the context of loops found in the original
code, which can contain low-level optimizations (such as tiling and
array flattening) that use different indexing than the Halide code
to be synthesized. For example, the input code shown in Figure 2a

roi = [(0; cols); (0; rows)]
dst(x ;y) = ⊥(??)

(a) The goal is to synthesize the arguments required to compute ⊥.

1 RDom r(0, cols, 0, rows);
2 Var i, j;
3 dst(i,j) = undef<int>();
4 dst(r.x,r.y) = ⊥(src(x,y-1), src(x,y), src(x,y+1), 3);

(b) A candidate mapping expressed in Halide.

1 for (int r = 0; r < rows; r++) {
2 for (int c = 0; c < cols; c++) {
3 dst[c] = ⊥(src[c-rowBytes], src[c], src[c+rowBytes], 3);
4 }
5 dst += rowBytes;
6 src += rowBytes;
7 }

(c) A reduced version of the 3x1 column-blur used to synthesize terminal
mappings.

Fig. 6. Once the ROI has been determined, Dexter synthesizes a mapping
for terminals found in the input code.

stores the input image src as a 1-D array, while the translated
Halide code stores the input as a 2-D array as determined by the
ROI. Hence, the terminal src[c-rowBytes] in the input code can
be mapped to src(x ;y − 1) in the Halide summary, where x and y
are the loop induction variables bound to the two dimensions of the
ROI. Determining the mappings for constants is trivial: all constants
map to themselves. For all other terminals,Dexter synthesizes their
mappings through program synthesis.

4.2.3 Grammar for Terminal Mapping. Figure 4b describes the gram-
mar used to synthesize terminal mappings. A terminal (Term) can
map to scalar values or array reads. While generating array in-
dexing expressions (Index), the grammar allows offsetting integer
variables, such as the induction variables, by a constant. This allows
the synthesizer to explore reads from neighboring indices. Finally,
the grammar can also express indirect array accesses to handle
code that use pre-computed lookup tables, for instance, the terminal
histogram[src[i]] that looks up from a pre-computed histogram
based on the current location’s pixel value.

4.2.4 Verifying Mappings. Dexter again constructs a reduced ver-
sion of the input to check the correctness of any synthesized map-
ping. Like ROI synthesis, Dexter removes all statements in the
input code fragment, except for loops and assignments to output ar-
rays. Rather than changing array assignments to ⊥, Dexter instead
changes array assignments to a special ⊥ function with parameters
being the extracted terminals.Dexter then generates a similar skele-
tal Halide program, an example of which is shown in Figure 6b, with
the special assignment shown on Line 4. Verification, like before, is
done by checking the equivalence of the two programs.

4.3 Synthesizing the Computation
The final step in synthesizing summaries is to infer how the termi-
nals combine to compute the values used to update the locations
within the ROI. To do so, Dexter replaces the special value ⊥ (as
shown in Figure 6a) with an actual Halide expression.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:7

4.3.1 Expressions Grammar. Figure 4c shows the grammar to used
to synthesize Halide expressions. Besides simple expressions such
as arithmetic expressions, Dexter also supports conditionals in the
form of ternary operations, as well as type-casting to different inte-
ger bit-widths, between integer and floating point representations,
along with signed and unsigned representations. The only terminals
available in the grammar (Terms) are the terminals synthesized in
the second stage and the special iden terminal which represents
no-op. The no-op operator is useful for describing operations such
as threshold blends, where the input data values control whether a
point in the ROI is modified or not.

4.3.2 Verifying the Summary. Replacing ⊥ with a candidate Halide
expression yields a candidate summary of the input code. Similar
to the previous stages, Dexter verifies a candidate by constructing
the corresponding Halide program and then testing the equivalence
of the generated candidate program with the original code fragment.
If verification succeeds, then we have found a valid translation of
the input code. If not, the synthesizer attempts to generate another
candidate, until it exhausts the search space (i.e., the search space
encoded by the grammar is not expressive enough), or it times out.

As explained in §2.2, Dexter uses the Sketch synthesizer to sam-
ple the search space for each of the three sub-problems created by
our algorithm. In Appendix A, we provide supplementary details on
the finer optimizations used by Dexter to optimize the search pro-
cess. Once synthesized, the summary is sent to the code generator
to produce executable Halide code. We discuss the details in §5.4.

5 IMPLEMENTATION
We implementedDexter’s program analyzer using the Clang [Lopes
and Auler 2014] compiler’s libTooling library to parse C++ code
into an abstract syntax tree (AST). The analyzer traverses the AST to
perform static analysis and DAG generation, and sends the results to
the summary generator.Dexter’s summary generator, implemented
in Java, uses an off-the-shelf synthesizer called Sketch [Solar-Lezama
2019], along with Z3 [De Moura and Bjørner 2008] for verification.
The code generator for parsing the synthesizer’s output and gener-
ating the output Halide code is also implemented in Java.
In the remainder of this section, we first outline the subset of

C++ that Dexter supports. Then, we discuss how users can interact
with, extend, and fine-tune Dexter. Last, we provide details about
Halide code generation.

5.1 Supported C++ Constructs
To translate any input code fragment, Dexter must parse the in-
put and generate search grammars for the different components
(as described in §4). Dexter currently supports a core set of C++
constructs, such as basic assignment and declaration statements,
conditionals, loops, functions, and user-defined types.

5.1.1 Types Supported. Dexter supports all built-in primitive C++
data types and operators. It also processes reads and writes into
primitive arrays or std::vector types.Dexter only supports point-
ers that represent dynamically sized primitive arrays, and internally
models them as a data array and an integer offset that represents the

pointer’s location within the array. This enables supporting pointer
de-referencing and arithmetic when generating search grammars.
To support user-defined types, Dexter traverses the program

AST to find declarations of all user-defined structs used in the
code being translated. It then adds these types to the underlying
synthesizer’s and verifier’s type systems. This is useful especially
when planar image data is stored in a struct with arrays for each
channel. Dexter can also generate search grammars for code that
involves user-defined types, including the use of constructors and
methods.

5.1.2 Loops. Dexter can process different types of loops (for,
while, do), including those with loop-carried dependencies after
applying classical transformations [Aho et al. 2006] to convert them
into while(true){...} loops.

5.1.3 Functions. Dexter handles function calls by inlining the func-
tion bodies, except if the function being called is pure and computes
a scalar quantity from other scalar quantities. Dexter translates
such functions to equivalent pure functions in our IR and adds them
to the search space to keep the generated code clean and understand-
able. For example, in Figure 7, the output dst is computed using
the function Mul8x8Div255, which multiplies the two input 8-bit
values, divides by 255, and returns the result. Since Mul8x8Div255
is a pure function, Dexter will add it to the expressions grammar
in Figure 4c. Dexter currently does not support recursive functions
and functions with side-effects other than array writes, since neither
are expressible in Halide.2

5.1.4 External Library Functions. Users can provide semantic mod-
els of external library functions used in the input code by implement-
ing them using Dexter’s IR. Dexter already comes with built-in
support for a number of common functions from the C++ standard
library (e.g., min, max, abs etc).

5.2 DAG Construction
Image processing functions often implement a pipeline of operations
computing multiple intermediate and output values. Summaries
expressed in our IR that describe the output of an entire multi-stage
pipeline are not only difficult to synthesize (due to their potentially
large size), but they often do not exist as not all pipelines can be
inlined into a single operation. This is the case, for example, of a
pipeline where an earlier stage computes a histogram that a later
stage uses. To address this issue, Dexter parses the input functions
into a DAG, where each node in the graph represents a single loop-
nest found in the code and is treated as an operation in a larger
pipeline. This allows us to introduce ordering between different
fragments of computation within the function, all of which can
be expressed using our IR and therefore be translated to Halide to
produce a Halide pipeline.
Dexter generates the DAG through a forward traversal of the

function’s statements, assigning each statement to a stage in the
DAG. At the start, Dexter initializes the DAG with a single stage
that has no statements. It then adds all basic program statements,
such as variable assignments and declarations, to the current stage
2Functions with side effects can be called from Halide by using extern functions, but
such translations are beyond the scope of this paper.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:8 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 void adjustOpacity(uint8_t* dst, int opacity, int rows,
2 int cols, int rowBytes) {
3 assert (cols <= rowBytes); // required user annotation
4 for (int r = 0; r < rows; r++) {
5 for (int c = 0; c < cols; c++) {
6 dst[c] = Mul8x8Div255(dst[c], opacity);
7 }
8 dst += rowBytes;
9 }
10 }

Fig. 7. User annotation helps Dexter determine that each index of the array
is updated only once.

of the DAG until it reaches a loop nest. Once a loop is encountered,
Dexter adds the loop nest to the current stage and creates a new
stage as a child of the previous stage. Dexter then resumes the pro-
cess until either another loop is encountered or all of the function
statements have been assigned. A special case is made for condi-
tional statements (e.g., if) that contain a loop in either branch of
the control flow path (or both). Each branch of the conditional is
recursively parsed into a DAG, with the heads of each sub-DAG
connected to the current graph as child nodes (representing a fork
in the DAG). The last stages in each of the sub-DAGs are merged
back together just as the original program control flow merges.
As an illustration, the blur function in Figure 2a is parsed by

Dexter into two consecutive stages, where stage 1 contains all
statements from Line 3 to 11, and stage 2 contains all statements
from Line 12 to Line 22. Dividing the input code this way replaces
one difficult synthesis problem (finding a summary that involves 10
terms) to two much simpler synthesis problems (finding summaries
involving only 4 terms).

5.3 User Interaction
In this section, we discuss the miscellaneous inputs a user may
provide to Dexter and how users may tune or extend the system
in the future.

5.3.1 Code Annotations. Occasionally the functions in a library
make assumptions about the input parameters that are not explicitly
expressed in the source code and yet are essential to its correctness.
For instance, the code shown in Figure 7 takes as input variables
cols and rowBytes representing the number of columns to compute
in each row and the width of the output buffer row in bytes, respec-
tively. The code implicitly assumes that the number of columns is
less than or equal to the row-width; otherwise, the assignment on
Line 6 would be executed multiple times for some locations in dst.
Because of this possibility, Dexter will fail to translate the code
fragment as there exist inputs where the fragment is not equivalent
to a two-dimensional Halide assignment. Users can help Dexter
translate such kernels by adding annotations, such as the assert
statement on Line 3, to clarify the intent of the code.

5.3.2 Tuning Search Grammar. The default grammar used by Dex-
ter represents a broad class of image processing operations. Users
may alternatively want to specialize the grammar to the library
they intend to translate. For instance, if the library only includes
point-wise operations, the grammar could be adjusted to not explore
neighboring points when synthesizing point mappings. Similarly,

1 for (int row = 0; row < rows; row++) {
2 for (int col = 0; col < cols; col++) {
3 int x = msk[row*cols + col];
4 x = 255 - x + noiseData[HashFunction(row,col)];
5 if (x < 256)
6 msk[row*cols + col] = 255;
7 else
8 msk[row*cols + col] = 0;
9 }
10 }

Fig. 8. Synthesizing the mapping for terminal noiseData requires synthe-
sizing the hash function.

users may want to compose Halide expressions from a set of custom
higher-level library-specific operations.Dexter is designed to make
such modifications easy: it allows users to express grammars by
writing them in a format similar to those shown in §4. Our default
grammar is expressed using fewer than 250 lines of code.

5.3.3 Extending Dexter. Dexter is designed to be highly extensible.
For instance, to support custom types or external library functions
in the input source code, users only need to provide models for
said types and functions using Dexter’s IR. To demonstrate the ease
of extending Dexter, we discuss two patches to the system that
enable the translation of benchmarks that Dexter failed to translate
during our evaluation: a dissolve blend and an addition blend.

The dissolve blend uses a specialized hash-function over the loop
counters to pseudo-randomly read noise data from a pre-computed
table, as shown in Figure 8. To find the mapping for terminal
noiseData[HashFunction(row,col)],Dexterwould have to syn-
thesize this hash function using our points grammar, which is very
challenging. A straightforward solution is to implement HashFunc-
tion inDexter using the IR and update the Index rule in the default
points grammar (Figure 4b) as follows:

Index := intvar | intvar ± const | const

| arrvar (HashFunction(Index ; Index); : : :)
| arrvar (Index ; : : :)

The addition blend fails since it calls the function UDIV255, to
perform an unsigned divide-by-255, that is implemented using hand-
written assembly, a feature currently not supported by Dexter.
Providing Dexter with a semantic model of the UDIV255 function
is sufficient to translate this benchmark:
uint_t UDIV255(uint_t x) { return x / 255; }

5.4 Code Generation
Since the synthesizer outputs code using a stylized subset of Halide,
code generation is straightforward and is done via a small set of
rules. The ROI described by the summary is used to declare the set of
induction variables, one for each dimension, as well as constructing
the reduction domain (Halide::RDom) to iterate over, which defines
the set of points over which the stencil executes. The expressions
synthesized in the final step describe how each location in the
output buffer is computed, and has a one-to-one correspondence
with Halide’s Func assignment statements.

Figure 9 lists a part of Dexter’s code generation function Gen(),
which takes in a Dexter IR construct and generates executable

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:9

Gen(roi = [(lb0, ub0), . . .]) = RDom(Gen(lb0), Gen(ub0), . . .)
Gen(e1 = e2) = Gen(e1) = Gen(e2)

Gen((e1 ? e2 : e3)) = select(Gen(e1), Gen(e2), Gen(e3))
Gen(cast<τ >(e)) = Halide :: cast <τ >(Gen(e))

Gen(e1 + e2) = Gen(e1) + Gen(e2)
Gen(var) = var

Fig. 9. A subset of Dexter’s code generation function Gen().

Halide code. Gen() is recursively called: for instance, calling Gen()
on e1 + e2 will recursively call Gen() to translate each operand. Ex-
pressions such as variables and constants represent the base cases,
as they trivially map to themselves. Translating the required decla-
rations works similarly; Line 1 in Figure 9 converts the synthesized
ROI description into an RDom declaration.

6 EVALUATION
In this section, we present a comprehensive evaluation of Dexter’s
ability to: (1) translate complex and diverse image processing code,
and (2) translate code efficiently. Furthermore, we investigate the
performance of the compiled Halide library against the original C++
implementation in various contexts.
All benchmarks in our evaluation were compiled on a high-

performance server with 4 Intel Xeon E7-4890v2 2.8 GHz 15-core
processors, 1 TB of memory, running Ubuntu OS 16.04. For synthesis,
Dexter utilized Sketch 1.7.5 with a parallelism factor of 100. Z3 ver-
sion 4.8.3 was used for verification. Runtime performance evaluation
for compiled code was performed using a 15-inch Apple Macbook
Pro (2018) with a 6-core 2.6 GHz Intel Core i7 processor and 16 GB of
memory, running macOS 10.14.2; and a 2018 12-inch iPad Pro with a
2.5 GHz Apple A12X processor3 (ARM64 architecture) running iOS
12.2. The Intel machine supports AVX2 vectorization, and the ARM
machine supports NEON vector instructions. We use Git commit
cf73bfe6 of Halide for all tests, using the default auto-scheduler
weights.

6.1 Code for Evaluation
We evaluate Dexter on 3 suites of image processing functions
from Photoshop by Adobe, containing a total of 353 performance
critical functions. These functions are called when performing a
variety of essential image processing operations, including com-
positing layers and basic transformations such as rotations and
blurs. Due to their importance, some essential functions have been
hand-optimized with vectorized x86 implementations; however, due
to the difficulty of hand-optimization, only a small subset has been
optimized, and these implementations do not take advantage of the
latest vectorization capabilities of x86 processors.
Blend Suite consists of 186 functions across approximately 13k

lines of C++ code, which perform point-wise image blending opera-
tions such as Normal, Multiply and Dissolve blends. For the most
basic operation, i.e. the Normal blend mode [Porter and Duff 1984],
two image layers A; B are combined based on a per-pixel weightW ,
such that the output pixel coutput is a linear combination of input

3Multithreaded performance is limited to 2.3 GHz.

pixels cA; cB :

coutput = W × ca + (1 −W) × cB

The set of functions supports a large number of blend modes, but
also includes a number of other operations. In addition, the suite
contains specialized implementations for specific bit-widths and
color formats, as well as specializations where weights are constant.
SSE Blend Suite is a set of hand-optimized blending operations,

containing 36 functions implemented in 4.5k lines of code, with a
mix of SSE2 intrinsics and hand-written assembly. These are highly
non-portable implementations, making it difficult to run Photoshop
efficiently on non-x86 hardware.
Filter Suite contains 131 functions implementing various image

filtering algorithms that convolve an image with a filter, written in
19k lines of code. These include filters with specific radii, filters for
which the radius is an input, as well as specializations for specific
image formats.

6.2 Feasibility Analysis
Dexter was able to automatically translate 264 out of 353 functions
to Halide, achieving a coverage of 88% for the Blend Suite, 100%
for the SSE Blend Suite and 50% for the Filter Suite. The total time
required by Dexter to compile all three suites was 182 hours, an
average of 47 minutes per function. The compilation time essentially
equals the synthesis time, since synthesis dominates the process.
Time spent in all other stages, such as parsing, DAG generation and
code generation is insignificant.
Of the 89 code fragments that Dexter failed to translate, 51

failed due to lack of front-end support of language constructs in our
current implementation, such as embedded assembly instructions,
recursive functions or switch statements. Another 38 benchmarks
took too long to synthesize and timed-out after 6 hours of search.
See §5.3.3 for examples of such failures, as well as a discussion on
how Dexter can be patched to translate them. The relatively lower
coverage of the Filter Suite is due to the increased complexity of
the input code. However, this complexity does not stem from the
convolutional nature of the functions but instead from how they
are implemented. For example, the Filter suite contains recursive
implementations and pointer type-casts, i.e., language features that
either our current prototype cannot reason about or are unsupported
by Halide.

Photoshop executes the code fragments in our test suite on indi-
vidual tiles of the image that fit into processor caches. As such, the
loops inside the operations do not benefit from tiling optimizations
common in image processing. To demonstrate that Dexter can also
translate tiled implementations, we manually modified one image
operation implementation to execute in tiles of 16×32, as shown
in Figure 10. Dexter successfully translated the loops to recover
the correct region of interest (ROI) and the untiled implementa-
tion. However, synthesizing the ROI for the tiled implementation
took approximately 6× longer since two additional invariants were
required due to the additional for loops.
Compared to Helium [Mendis et al. 2015], which uses dynamic

execution traces to perform translation, Dexter translates many

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:10 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 void Darken (uint8_t *dst, uint8_t *src, uint8_t *msk,
2 int rows, int cols, int rowBytes)
3 {
4 for (int rowOut=0; rowOut < rows; rowOut += 16){
5 for (int colOut=0; colOut < cols; colOut += 32){
6

7 for (row = rowOut; row < min(rows, rowOut+16); row++){
8 for (col = colOut; col < min(cols, colOut+32); col++){
9 uint16_t delta = (src[row * rowBytes + col])
10 - (dst[row * rowBytes + col]);
11 if (delta < 0)
12 (dst[row * rowBytes + col]) -=
13 Mul8x8Div255((msk[row * rowBytes + col]),
14 -delta);
15 }
16 }}}
17 }

Fig. 10. An example of a tiled implementation that Dexter can successfully
de-schedule to recover the program summary.

more operations. We ran Helium4 on Photoshop and were able to
fully-translate 7 operations; part of the difficulty in applying Helium
is that the operations must be triggered after starting tracing, which
is thenmanually stopped after the operation is complete. Attempting
to translate compositing operations fails under this scenario, because
the composite calls many different operations, causing Helium’s
heuristics to fail; thus, all of the successful translations are from the
Filter Suite. Of the 7 translated operations, one (boxBlur) cannot
be translated by Dexter due to its recursive nature; in addition,
Helium only translates the radius 1 specialization of this function.
The other 6 functions are also translated by Dexter successfully.

6.3 Translation Performance
In this section, we discuss two experiments to evaluate the effec-
tiveness of Dexter’s three-stage search algorithm. STNG, which
lifts Fortran code to Halide, uses monolithic search combined with
traces generated by symbolic execution to limit the search space.
Though not a direct comparison between the systems (sinceDexter
does not use execution traces, and since the systems target different
front-end languages), the experiments in this section compare the
monolithic search strategy of STNG against the modular search of
Dexter.
For our first experiment, we compare the performance of Dex-

ter’s modular search against naive monolithic search over a set of
5 library functions using the same synthesizer. We hand-picked the
simplest functions to give naive search the best chance of comple-
tion. Each of the five benchmarks were successfully translated in
less than 10 seconds by our three-stage algorithm, whereas mono-
lithic search timed out after 15 minutes for all five functions. This
demonstrates a speedup of roughly 100× in synthesis time.
Our second experiment aims to investigate how uniformly the

synthesis problem is partitioned. To do so, we reviewed the amount
of time spent in each of the three stages of synthesis. Across the 264
benchmarks that were successfully translated, Dexter spent 23% of
the translation time during the first stage, 34% of the time during the
second stage and the remaining 43% of the time was spent during

4Git commit id 139a4a95

the third stage, showing that dividing the original synthesis problem
into three parts improves overall search efficiency.

6.4 Runtime Performance
To demonstrate the possible benefits of applying Dexter to existing
image processing code, we compare the performance of the original
reference code to the generated Halide code. We apply the newest
Halide autoscheduler [Adams et al. 2019] to each translated pipeline;
this newest autoscheduler uses a combination of learned models
and auto-tuning to obtain the best performance. For our x86 testbed,
we allow the autoscheduler to explore 32 potential schedules and
utilize the best-performing one. Because the current tooling for
the autoscheduler does not support exploring GPU schedules or
executing on iPads 5, we allow the autoscheduler to use a model
augmented by obtained performance on the x86 candidates. We do
not argue that these are the best schedules, but they give a sense of
what kind of performance can be obtained fully automatically.

In Photoshop, low-level image operations are called on image tiles
of a fixed size, instead of on the entire image or layer. The default
tile size is 1024×1024, and, depending on the operation, tiles may be
interleaved or planar. In the actual application, a separate subsystem
subdivides tiles among different threads for parallel execution; for
these experiments, we run the original code in isolation, without
parallelism, since the operations themselves do not contain parallel
directives6. We measure performance when the tile is present in
cache, as this scenario is the most common in Photoshop.
Figure 11 shows the performance improvements from applying

Dexter to Photoshop image processing source code7. The median
performance improvement on our x86 test machine is 7.03×, with
70% of all benchmarks achieving a speedup of at least 2×. While
compilers are able to vectorize some of these functions automati-
cally, the use of Halide enables a much more efficient vectorized
and parallelized schedule with little effort, demonstrating the use-
fulness of Dexter in bringing the benefits of Halide to legacy image
processing code.

6.4.1 Porting to Di�erent Architectures. Photoshop currently only
runs on Intel architectures, so for this experiment we demonstrate
the usefulness of porting legacy code to Halide automatically to en-
able cross-platform performance. For our ARM testbed, the median
speedup is 4.52×. In some cases, especially for interleaved bench-
marks, Figure 11 shows that the autoscheduler chooses a suboptimal
schedule; this could easily be fixed by changing just a line or two
in the generated schedule, unlike the case when hand-optimizing
C++ code. To test this, we explored why some of the benchmarks
are more than 10× slower, and discovered that the autoscheduler
attempted to parallelize over the channel dimension for the inter-
leaved benchmarks; in essence, this schedule forces fine-grained
synchronization between cores by sharing cache lines. By writing

5Apple requires code signing for execution, and the current tooling for the autosched-
uler does not implement this requirement.
6Thus, within Photoshop, the performance is often higher than shown here. However,
the purpose of this experiment is to show runtime performance of translated kernels,
not to compare against Photoshop performance.
7Because some translated functions are difficult to test in isolation (e.g. they are leaf
operations in a multi-step pipeline), we show performance results for only functions
with unit tests that execute them in isolation (88% of the test set).

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:11

Translated Function

10 2

10 1

100

101

102
Sp

ee
du

p

Geometric
Mean
3.36

x86 Performance

Translated Function

10 1

100

101

Sp
ee

du
p

Geometric
Mean
2.69

A12X Performance

Fig. 11. Speedup obtained from automatic translation followed by autoscheduling. For x86, we allow the autoscheduler to explore 32 candidates, while for
ARM we allow the autoscheduler to augment its model using the x86 performance, but do not explore multiple schedules. Benchmarks are ordered by their
x86 speedup; the ARM chart shows fewer benchmarks because we cannot execute hand-written SSE for comparison purposes.

a simple schedule by hand, we obtain 1.4–4.4× speedups for these
benchmarks.

6.5 Composing Translated Functions into Pipelines
A document in Photoshop, like in many image processing programs,
consists of layers of image data, which are composited together
using blend modes and filters. The overall document can be thought
of as a directed acyclic graph (DAG), with multiple source nodes rep-
resenting the layer data, intermediate nodes representing blending
or filtering operations, and a single sink node representing the final,
composited document. In Photoshop, each intermediate node calls
multiple low-level routines from the different benchmark suites. In
this section, we construct a simple document-specific Just-In-Time
(JIT) compiled pipeline that performs the full composite for a small
document, and compare its performance with calling the translated
(and optimized) routines individually. In both cases, we utilize the
autoscheduler for optimization.

The document consists of two layers that are blended together us-
ing a normal blend (which calls three different translated functions),

and then blurred using a radius of one. Calling individual routines
yields a performance of 1.02 Gpixels/sec, while a combined func-
tion obtains 3.13 Gpixels/sec, a speedup of over 3×. This speedup
is almost completely due to avoiding unnecessary memory traffic,
since no intermediates need to be written to memory. We anticipate
that JIT-compiling document-specific pipelines for GPUs will yield
even greater speedups. This demonstrates that translation to Halide
opens up new possibilities for optimization that would be difficult
using the legacy C++ code, and Dexter enables such optimization
by automatically translating legacy C++ code into Halide.

7 CONCLUSION
In this paper, we presented Dexter, a tool that automatically trans-
lates image processing functions written in C++ to the Halide DSL.
Unlike traditional compilers, Dexter uses a novel domain-specific
synthesis algorithm to infer the summaries from the input image
processing operations. Our prototype can translate many real-world
image processing operations, and the translated code performs sig-
nificantly better when compared to the original implementation.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:12 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
through grants IIS-1546083, IIS-1651489, and OAC-1739419; DARPA
award FA8750-16-2-0032; DOE award DE-SC0016260; the Intel-NSF
CAPA center, and gifts from Adobe, Amazon, Google, Huawei, and
NVIDIA.

REFERENCES
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, MichaÃńl

Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and
Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree Search and
Random Programs. ACM Transactions on Graphics (TOG) 38, 4 (2019).

Adobe. 2010. Pixel Bender Language Reference. https://www.adobe.com/devnet/
archive/pixelbender.html

Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically LeveragingMapReduce
Frameworks for Data-Intensive Applications. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA, 1205–
1220. https://doi.org/10.1145/3183713.3196891

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:
Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Rastislav Bodík and Barbara Jobstmann. 2013. Algorithmic program synthesis: intro-
duction. International Journal on Software Tools for Technology Transfer 15 (2013),
397–411.

Pedro Boechat, Mark Dokter, Michael Kenzel, Hans-Peter Seidel, Dieter Schmalstieg,
and Markus Steinberger. 2016. Representing and scheduling procedural generation
using operator graphs. ACM Trans. Graph. 35, 6 (2016), 183:1–183:12.

Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanović, James Demmel, Kurt
Keutzer, John Shalf, Kathy Yelick, and Armando Fox. 2009. SEJITS: Getting Produc-
tivity and Performance With Selective Embedded JIT Specialization. In PMEA.

Alvin Cheung, Armando Solar-Lezama, and SamuelMadden. 2013. OptimizingDatabase-
backed Applications with Query Synthesis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’13). ACM,
New York, NY, USA, 3–14. https://doi.org/10.1145/2491956.2462180

L. Dalcin, R. Bradshaw, K. Smith, C. Citro, S. Behnel, and D. S. Seljebotn. 2010. Cython:
The Best of Both Worlds. Computing in Science & Engineering 13 (09 2010), 31–39.
https://doi.org/10.1109/MCSE.2010.118

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.acm.org/citation.cfm?id=
1792734.1792766

Brian Guenter and Diego Nehab. 2010. The Neon Image Processing Language. Tech-
nical Report. Microsoft Research. https://www.microsoft.com/en-us/research/
publication/the-neon-image-processing-language/

Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP ’10). ACM, New York, NY, USA, 13–24.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. 317–
330.

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014. Darkroom:
compiling high-level image processing code into hardware pipelines. ACM Trans.
Graph. 33, 4 (2014), 144:1–144:11.

James Hegarty, Ross G. Daly, Zachary DeVito, Mark Horowitz, Pat Hanrahan, and
Jonathan Ragan-Kelley. 2016. Rigel: flexible multi-rate image processing hardware.
ACM Trans. Graph. 35, 4 (2016), 85:1–85:11.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM
12, 10 (Oct. 1969), 576–580.

Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016. Ver-
ified Lifting of Stencil Computations. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’16). ACM,
New York, NY, USA, 711–726. https://doi.org/10.1145/2908080.2908117

Shoaib Kamil, Derrick Coetzee, Scott Beamer, Henry Cook, Ekaterina Gonina, Jonathan
Harper, Jeffrey Morlan, and Armando Fox. 2012. Portable Parallel Performance from
Sequential, Productive, Embedded Domain-specific Languages. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). ACM, New York, NY, USA, 303–304. https://doi.org/10.1145/2145816.
2145865

Bruno Cardoso Lopes and Rafael Auler. 2014. Getting Started with LLVM Core Libraries.
Packt Publishing, Birmingham, UK.

Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan Ragan-Kelley,
Sylvain Paris, Qin Zhao, and Saman Amarasinghe. 2015. Helium: Lifting High-
performance Stencil Kernels from Stripped x86 Binaries to Halide DSL Code. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, New York, NY, USA, 391–402. https://doi.org/
10.1145/2737924.2737974

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically scheduling halide image processing
pipelines. ACM Trans. Graph. 35, 4 (2016), 83:1–83:11.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhur-
jati. 2016. Scaling Up Superoptimization. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 297–310. https:
//doi.org/10.1145/2872362.2872387

Thomas Porter and Tom Duff. 1984. Compositing Digital Images. In Proceedings of the
11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’84). ACM, New York, NY, USA, 253–259.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4, Article 32
(July 2012), 12 pages. https://doi.org/10.1145/2185520.2185528

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P. Ama-
rasinghe, and Frédo Durand. 2012. Decoupling algorithms from schedules for
easy optimization of image processing pipelines. ACM Trans. Graph. 31, 4 (2012),
32:1–32:12.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman P. Amarasinghe. 2013. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. In PLDI.
ACM, Seattle, WA, USA, 519–530.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic Optimization of Floating-
point Programs with Tunable Precision. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’14). ACM,
New York, NY, USA, 53–64.

Armando Solar-Lezama. 2019. Sketch Synthesizer. https://people.csail.mit.edu/asolar/.
Accessed on: 2019-01-11.

Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat,
and Sanjit Seshia. 2007. Sketching Stencils. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07). ACM,
New York, NY, USA, 167–178.

ChenglongWang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query Synthesis
from Input-Output Examples. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD ’17). ACM, New York, NY, USA, 1631–1634. https:
//doi.org/10.1145/3035918.3058738

Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sarfraz Khur-
shid. 2018. Systematic Generation of Non-equivalent Expressions for Relational
Algebra. In ABZ (Lecture Notes in Computer Science), Vol. 10817. Springer, 105–120.

Yuting Yang, Sam Prestwood, and Connelly Barnes. 2016. VizGen: accelerating visual
computing prototypes in dynamic languages. ACM Trans. Graph. (TOG) 35, 6 (2016),
206:1–206:13. http://dl.acm.org/citation.cfm?id=2982403

A SYNTHESIS OPTIMIZATIONS

A.1 Symmetry Elimination and Memoization
The space of possible expressions encoded by the grammar in Fig-
ure 4c contains a large amount of symmetry: it can generate syn-
tactically different expressions that are semantically equivalent due
to the presence of commutative and associative operations (for in-
stance, a ∗ (b + c) ≡ a ∗ b + a ∗ c). Furthermore, larger functions
frequently contain recurring sub-expressions, especially across dif-
ferent branches of control flow. A naive search over this grammar
would consider far too many redundant expressions with the same
semantics. Therefore, Dexter, inspired by prior work in relational
algebra [Wang et al. 2018], uses a bottom-up expression generator
that prunes away redundant expressions, while memoizing already
generated sub-expressions for reuse.

The expression generator maintains a list of expressions, initially
instantiated with the set of available terminals. To construct new
expressions, the generator first chooses an operator from the set of
operators available in the grammar. Next, it chooses operands for

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

https://www.adobe.com/devnet/archive/pixelbender.html
https://www.adobe.com/devnet/archive/pixelbender.html
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.1109/MCSE.2010.118
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://www.microsoft.com/en-us/research/publication/the-neon-image-processing-language/
https://www.microsoft.com/en-us/research/publication/the-neon-image-processing-language/
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2145816.2145865
https://doi.org/10.1145/2145816.2145865
https://doi.org/10.1145/2737924.2737974
https://doi.org/10.1145/2737924.2737974
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2185520.2185528
https://people.csail.mit.edu/asolar/
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3035918.3058738
http://dl.acm.org/citation.cfm?id=2982403

Automatically Translating Image Processing Libraries to Halide • 204:13

 Input Terminals Step 1 Step 2 Step 3 Step 4 Step 5
Trace 1 msk(i) src1(i) src2(i) 1 1 == msk(i) src1(i) * src2(i) src1(i) * src2(i) * msk(i) (1==msk(i) ? src1(i) * src2(i) : src1(i) * src2(i) * msk(i)) -
Trace 2 msk(i) src1(i) src2(i) 1 msk(i) == 1 src1(i) * src2(i) src1(i) * src2(i) * msk(i) (msk(i)==1 ? src1(i) * src2(i) : src1(i) * src2(i) * msk(i)) -
Trace 3 msk(i) src1(i) src2(i) 1 msk(i) == 1 src1(i) * src2(i) msk(i) * src1(i) * src2(i) (msk(i)==1 ? src1(i) * src2(i) : msk(i) * src1(i) * src2(i)) -
Trace 4 msk(i) src1(i) src2(i) 1 msk(i) == 1 src1(i) * src2(i) src1(i) * src2(i) msk(i) * src1(i) * src2(i) (msk(i)==1 ? src1(i) * src2(i) : msk(i) * src1(i) * src2(i))

Fig. 12. Four possible traces of Dexter’s expression generation algorithm. The steps in green indicate successful termination of the algorithm, whereas the
steps in red indicate a pre-emptive rejection of the trace due to violation of symmetry breaking rules.

the operator from the list of expressions to construct a new expres-
sion. Finally, the generator checks whether this newly generated
expression is the correct expression for the summary by invoking
the solver. If so, the algorithm terminates and the expression is
returned. If it does not verify, the expression is memoized by ap-
pending it to the end of the list and the process is repeated until the
correct expression is found.
We illustrate our algorithm with an example. Suppose our goal

is to generate the following expression: (msk(i) == 1 ? src1(i) ∗
src2(i) : src1(i) ∗ src2(i) ∗msk(i)). In this expression, src1 and src2
represent two layers that we want to blend, and msk is the blend
mask. Figure 12 shows four possible traces (decision paths) of our
algorithm for producing semantically equivalent expressions. Not
all traces are viable as they contain steps violating our symmetry
breaking rules (marked in red), which we explain later. To demon-
strate our algorithm, we walk through trace 3, which successfully
generates this expression in four steps. In step 1, the algorithm com-
bines terminalsmsk(i) and 1 using the equality operator to construct
a boolean expression, but finds that the generated expression is not
the desired expression. In step 2, it combines src1(i) and src2(i) us-
ing multiplication. In the third step, the expression generated in
step 2 (src1(i) ∗ src2(i)) is combined with the terminal msk(i) us-
ing multiplication to get the alternate expression. The fourth and
final step uses these three generated expressions as operands to the
ternary operator to construct the desired output expression.
There are several benefits of Dexter’s memoization approach.

First, it maintains a total ordering over the generated expressions,
based on the list index at which they are stored. This is useful for
eliminating symmetries in the search space: for commutative and
associative binary operators, the expression generator only allows
binary expressions e1 op e2 where e1 is stored at a lower index in
the expressions array than e2, and likewise for the test, consequent,
and alternate expressions used in a conditional. To see the benefit,
consider traces 1, 2, and 3 in Figure 12. All three traces generate
semantically equivalent expressions, yet since they are syntactically
different, the synthesizer would enumerate all three in its search.
With our order-based pruning constraints, however, both trace 1
and trace 2 would be rejected as they violate the constraints at
step 1 and step 3 respectively. Furthermore, since the generated
sub-expressions are stored in the list, they can be reused subse-
quently. This reduces the number of steps the synthesizer must take
to generate expressions that contain recurring sub-expressions. This
is illustrated in trace 4 in Figure 12. This trace also generates the
correct expression, but since it does not reuse the sub-expression
src1(i) ∗ src2(i), the algorithm requires an extra step to build the
expression compared to trace 3.

A.2 Analysis Based Suggestions
The optimizations discussed so far are not particular to a specific
input kernel. Dexter also analyzes the input code to populate the
starting list of expressions with input-specific recommendations to
the synthesizer. For example, in the blur kernel, static analysis can
extract that the value being written into the dst array is (tmp[c-
rowBytes] + tmp[c] + tmp[c+rowBytes]) / 3. By substituting
our synthesized terminal mappings, we can get the equivalent IR
expression: (tmp(x ;y − 1) + tmp(x ;y) + tmp(x ;y + 1)) / 3. Dexter
therefore adds this expression as one of the initial expressions to
consider during synthesis. If the suggestion is correct, or is a sub-
expression of the correct expression, the synthesizer can construct
the result in fewer steps. If the suggestion is incorrect, the synthe-
sizer can simply ignore it and construct the correct expression using
the set of terminals. The overhead of providing these recommenda-
tions is minimal and the benefits of a correct recommendation are
significant (over 100x faster synthesis).

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related Work & Background
	2.1 Automatically Translating Image Processing Code
	2.2 Program Synthesis and Verification

	3 Overview
	3.1 Image Processing Functions
	3.2 Translating Image Processing Functions to Halide
	3.3 System Architecture

	4 Finding Summaries For Image Processing Operations
	4.1 Synthesizing the Region of Interest
	4.2 Synthesizing the Terminal Mappings
	4.3 Synthesizing the Computation

	5 Implementation
	5.1 Supported C++ Constructs
	5.2 DAG Construction
	5.3 User Interaction
	5.4 Code Generation

	6 Evaluation
	6.1 Code for Evaluation
	6.2 Feasibility Analysis
	6.3 Translation Performance
	6.4 Runtime Performance
	6.5 Composing Translated Functions into Pipelines

	7 Conclusion
	Acknowledgments
	References
	A Synthesis Optimizations
	A.1 Symmetry Elimination and Memoization
	A.2 Analysis Based Suggestions

